Check out Dmitry’s new paper in JPCL, describing our new method for modeling nonadiabatic molecular dynamics in dense manifolds of electronic states. In short, it does not require full knowledge of the many electronic PESs involved in the dynamics, but does not suffer from well-known problems arising from the mean-field nature of Ehrenfest dynamics.
New Paper on Defect-Defect Interaction during Recombination
Check out Wei-Tao’s newest paper in JPC C, describing an AIMD study of nanoparticle models containing multiple dangling bond defects. We find that nuclear relaxation effectively uncouples neighboring defects, even at very short range, resulting in recombination dynamics that are nearly identical to those observed in isolated defects.
Perspective on Intersection Locality
Better late than never: Check out our recent perspective article in PCCP, arguing that the lowest energy conical intersections are inherently local feature of molecules. That is, they arise from spatially local distortions of the geometric and electronic structure. This locality has important consequences for photochemistry and photophysics.
Annual Review on Conical Intersections at the Nanoscale
Check out our group’s article in the 2019 Annual Review of Physical Chemistry covering our work on modeling conical intersections in semiconductor nanomaterials.
Nonradiative Recombination in Perovskites
Check out Mike’s new paper in JPCA! In it, we analyze the low propensity for nonradiative recombination in lead halide perovskites by identifying and characterizing conical intersections in two models of the surface of CsPbBr3. We only find conical intersections that are inaccessible upon excitation across the bulk band gap. Analysis of the electronic structure around these intersections suggests that the ionic nature of the material contributes to the high energy of the intersections.
New Paper on Solution of the Vibrational Schrodinger Eq. around Conical Intersections
In Dmitry’s first paper in the group, he demonstrates that numerically exact solution of the vibrational Schrodinger equation in the adiabatic representation around a conical intersection in a finite basis is only possible if that basis contains discontinuous functions. We demonstrate an approach based on a basis of discontinuous functions on a 2-D model and discussed how our approach could be extended to more dimensions.
New Year’s Eve Featured Article in JCP on Roaming H2
Check out our most recently article with the Dantus group, investigating the formation of H3+ by H2 roaming in thiols, for comparison with our past work in alcohols. Though easier to ionize, H3+ yields in thiols are actually lower than in equivalent alcohols. Electronic structure calculations carried out by recently-graduated Dantus group member and friend of the group Muath Nairat provide an interesting explanation.
Also, congrats to Muath, who is starting a postdoc in the Schlau-Cohen group at MIT!
Roaming H2 in Nat. Comm.
Check out our recent collaborative effort with the Dantus group and Ned Jackson at MSU and researchers at Kansas State University in Nature Communications. In conjunction with experiment, Dantus group member Muath Nairat conducted GPU-accelerated AIMD simulations of an intriguing chemical reaction: the formation of H3+ upon double ionization of small organic molecules in strong laser fields. It is found that H3+ forms when a roaming H2 molecule abstracts a proton from the remaining molecular fragment. Our GPU-accelerated CASCI code enabled excellent sampling of trajectories on a potential energy surface that provided a balanced treatment of closed shell and radical reaction pathways.
New Paper on Quantifying the Effect of Stokes Shift on Efficiency in TLSCs
Check out Wei-Tao’s new paper in Sci. Rep. in which we discuss the effect of Stokes shift on the efficiencies of translucent luminescence solar concentrators based on cyanine dyes.
Sadly, this work is dedicated to the memory of great friend and scientist Seth Olsen who passed away suddenly earlier this year. Cyanine dyes were among our common interests, and I learned a lot about them from reading his papers and talking to him. He is greatly missed.